

COURSE 1

A BEAUTIFUL UNIVERSE:

Black Holes, String Theory, and the Laws of Nature as Mathematical Puzzles

CUMRUN VAFA, PHD • HARVARD UNIVERSITY
(C) 2018 WORLD SCIENCE FOUNDATION. ALL RIGHTS RESERVED.

MODULE 1

A BEAUTIFUL UNIVERSE:

Black Holes, String Theory, and the Laws of Nature as Mathematical Puzzles

Cumrun Vafa, PhD Harvard University

© 2018 World Science Foundation.

All rights reserved.

MATH & PHYSICS CONNECTIONS

Deep physical ideas have simple mathematical underpinnings.

We will explore puzzles that illuminate those math-physics connections.

PUZZLE 1: MIXING PAINTS

Math and Physics Connections: Symmetry and Conservation Laws

ARISTOTLE

Heavier objects fall faster

GALILEO

All objects fall at the same rate

Math and Physics Connections: Symmetry and Conservation Laws

PUZZLE 2: DESIGNING A HIGHWAY SYSTEM

Math and Physics Connections: Symmetry and Symmetry Breaking

EARLY GREEK PHILOSOPHERS

Earth is round and at the center of the universe

And it is not moving!

BREAKS SYMMETRY

ARISTOTLE

"Not a good argument!"

Spontaneous symmetry breaking is imprinted on our bodies!

Math and Physics Connections: Symmetry and Symmetry Breaking

Why is symmetry breaking important in physics?

MODERN APPLICATION
OF SYMMETRY BREAKING

Higgs particle and the origin of mass

Unreasonable Power of Simple Mathematics

$$2\pi R + 1 = 2\pi (R + x)$$

$$1 = 2\pi x \Rightarrow x = \frac{1}{2\pi} \approx 0.16$$

Unreasonable Power of Simple Mathematics

MATH AND PHYSICS CONNECTION:

Power of Continuity

$$f(\theta) = T(\theta) - T(\theta + \pi)$$

$$f(\theta) = T(\theta) - T(\theta + \pi)$$
$$f(\theta) = -f(\theta + \pi)$$

$$f(\theta) = T(\theta) - T(\theta + \pi)$$

$$f(\theta) = -f(\theta + \pi)$$

$$T(\theta)$$

$$(\theta + \pi)$$

$$T(\theta)$$

$$(\theta + \pi)$$

 $f(\theta)$

GRAVITATIONAL LENSING

Another example of power of continuity

Blue circles: same quasar Orange circles: same galaxy

FACT:

The number of gravitational images (if no image is blocked) is always odd. Just less than half of them are inverted images.

DEGREE OF A MAP

Net number of primages of a given point counted with

"+" sign if the map is not inverted and "-" sign if it is

DEGREE OF A MAP

Degree of the map

when there is no matter is 1

Ants Colliding

ANT 1 ANT 2 ANT 3 ANT 4

Math and Physics Connection: Power of Mathematical Abstraction

Ants on a Meter Stick

PUZZLE 5

Math and Physics Connection: Duality

PUZZLE 5

Math and Physics Connection: Duality

Two seemingly different systems can nevertheless be identical. This typically involves a change of perspective.

PUZZLE 6

Points and Regions

REFLECTIONS ON SCIENTIFIC METHODOLOGY

- **1.** Examples/experiments
- **2.** Formulate a general principle based on examples
- **3.** Come up with arguments why/how it works...

Points # Regions 2

WHAT IS THE EXPLANATION?	

2

Points

4

Regions

16

	# Points	# Regions
$R = 1 + \binom{N}{2} + \binom{N}{4}$	2	2
	3	4
	4	8
	5	16
	6	31

MATHEMATICAL PUZZLES

Encapsulate deep physical principles

And they're fun!

I hope this encourages you not only to have **fun** with solving puzzles, but also to ask what **nugget of truth** we learn from each one.