COURSE 1

A BEAUTIFUL UNIVERSE:

Black Holes, String Theory, and the Laws of Nature as Mathematical Puzzles

CUMRUN VAFA, PHD = HARVARD UNIVERSITY
(C) 2018 WORLD SCIENCE FOUNDATION. ALL RIGHTS RESERVED.

MODULE 1

A BEAUTIFUL UNIVERSE:

Black Holes, String Theory, and the Laws of Nature as Mathematical Puzzles

Cumrun Vafa, PhD
Harvard University
© 2018 World Science Foundation.
All rights reserved.

MATH \& PHYSICS CONNECTIONS

Deep physical ideas have simple mathematical underpinnings.

We will explore puzzles that illuminate those math-physics connections.

PUZZLE 1: MIXING PAINTS

PUZZLE 1

Math and Physics Connections:
Symmetry and Conservation Laws

ARISTOTLE

Heavier objects fall faster

GALILEO

All objects fall at the same rate

0 N

0 N
4

PUZZLE 1

Math and Physics Connections:
Symmetry and Conservation Laws

PUZZLE 2: DESIGNING

A HIGHWAY SYSTEM

B

PUZZLE 2

Math and Physics Connections:
Symmetry and Symmetry Breaking

EARLY GREEK PHILOSOPHERS

Earth is round and at the center of the universe

And it is not moving!

 BREAKS SYMMETRY

ARISTOTLE

"Not a good argument!"

Spontaneous symmetry
breaking is imprinted on our bodies!

PUZZLE 2

Math and Physics Connections: Symmetry and Symmetry Breaking

Why is symmetry breaking important in physics?

MODERN APPLICATION OF SYMMETRY BREAKING

Higgs particle and the origin of mass

PUZZLE 3

Unreasonable Power of Simple Mathematics

EARTH AND
 THE EQUATOR

$2 \pi R+1=2 \pi(R+x)$
 $1=2 \pi x \Rightarrow x=\frac{1}{2 \pi} \approx 0.16$

$\chi=121 \mathrm{~m}$

PUZZLE 3

Unreasonable Power of Simple Mathematics

MATH AND PHYSICS CONNECTION:

Power of Continuity

$$
f(\theta)=T(\theta)-T(\theta+\pi)
$$

$$
\begin{aligned}
& f(\theta)=T(\theta)-T(\theta+\pi) \\
& f(\theta)=-f(\theta+\pi) \\
& \underbrace{T(\theta)}_{T(\theta+\pi)}
\end{aligned}
$$

$$
\begin{aligned}
& f(\theta)=T(\theta)-T(\theta+\pi) \\
& f(\theta)=-f(\theta+\pi)
\end{aligned}
$$

GRAVITATIONAL LENSING

Another example of power of continuity

Blue circles: same quasar Orange circles: same galaxy

FACT:

The number of gravitational images (if no image is blocked) is always odd. Just less than half of them are inverted images.

When no other matter:

DEGREE OF A MAP

Net number of primages of a given point counted with
"+" sign if the map is not inverted and "-" sign if it is

DEGREE OF A MAP

Degree of the map
when there is no matter is 1

PUZZLE 4

Ants Colliding

ANT 2
ANT 4

PUZZLE 4

Math and Physics Connection:

Power of Mathematical Abstraction

PUZZLE 5

Ants on a Meter Stick
階省

PUZZLE 5

Math and Physics Connection: Duality

PUZZLE 5

Math and Physics Connection: Duality

Two seemingly different systems can nevertheless be identical. This typically involves a change of perspective.

PUZZLE 6

Points and Regions

REFLECTIONS ON SCIENTIFIC METHODOLOGY

1. Examples/experiments
2. Formulate a general principle based on examples
3.

Come up with arguments why/how it works...

WHAT IS THE EXPLANATION?

MATHEMATICAL PUZZLES

Encapsulate deep physical principles
And they're fun!

I hope this encourages you not only to have fun with solving puzzles, but also to ask what nugget of truth we learn from each one.

