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MODULE 2:

ARE THERE LAWS OF LIFE?

WHAT WOULD THEY LOOK
LIKE?




PART 1:

CELLULAR AUTOMATA




WHAT IS EMERGENCE?
WHY IS IT INTERESTING?
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“The ability to reduce everything to simple fundamental
laws does not imply the ability to start from those laws

and reconstruct the universe.” T ———
— Phil Andersen (Nobel laureate in Physics) StoryANey IT Velikovsky (2015)




TRAFFIC JAM AS A MODEL
FOR EMERGENT PROPERTIES




CELLULAR AUTOMATA AS MODELS OF PHYSICS:
HOW GLOBAL PATTERNS EMERGE FROM SIMPLE,
LOCAL RULES
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GAME OF LIFE: Stil os Osciltors
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https://en.wikipedia.org/wiki/Conway%27s Game of Life.




VON NEUMANN:
SELF-REPRODUCING AUTOMATA




ARCHITECTURE OF SELF-REPRODUCING “MACHINES”

[ ]
ASUPERVISORY UNIT
e enables replication of
The ribosome + Q ¢ ’.;,5 _ DNA e

assisting biomolecules
act like a UNIVERSAL
CONSTRUCTOR

% ©
(well ... sort of) f-\;OI “;\\,{/5 %

‘ ‘ [HA N - This is an instructional TAPE, i.e.,
a small part of a larger biological
algorithm

J. von Neumann. Theory of Self-Reproducing Automata. University of lllinois, 1966. J. von Neumann. The Computer and the Brain. Yale University Press, 1958.




SELF-REPRODUCING AUTOMATA AS
PHYSICAL SYSTEMS: PHYSICAL UNIVERSALITY

‘“physical’’ universality: the ability to implement any
transformation whatsoever on any finite region

Figure 3: An example of a configuration (left) such that after only three timesteps, the abstract
evolution (middle) differs from the minimal consistent configuration (right).

D. Janzing 2010 “Is there a physically universal cellular automaton or hamiltonian?” L. Schafer 2014 “A Physically Universal Cellular Automaton”




EVOLUTION AND THE
DIVERSIFICATION OF LIFE

fukaryoles it



PHYSICS:
Initial State

Si

BIOLOGY:
Initial State
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CELLULAR AUTOMATA WITH
STATE-DEPENDENT “LAWS”
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Examples of Case | CA exhibiting OEE. In each panel the environment e is shown on the left, and organism o on the
right. For each o, the Poincare recurrence rate for an isolated system is highlighted in blue, and the recurrence
time of the states is highlighted in red. (Adams et al (2017), Situation awareness and the cognitive management
of complex systems.)



PART 2:

BOOLEAN NETWORKS TO
MODEL BIOLOGICAL FUNCTION




SELF-REFERENTIAL DYNAMICS
“DYNAMICAL LAWS CHANGING WITH STATES”

L
Drawing Hands by M.C. Escher

“IIn biology] we encounter a situation
where the rules must be self-
referential: The update rules change
during the time evolution of the
system, and the way in which they
change is a function of the state and
thus the history of the system.”

— Goldenfeld and Woese (2011)

N. Goldenfeld and C. Woese. Life is physics: evolution as a collective phenomenon far from equilibrium. Ann. Rev. Condens. Matter Phys.
(2011) 2: 375-399. P. C. W. Davies. The epigenome and top-down causation. J. R. Soc. Interface, 2(1):42-48, 2012.




WADDINGTON EPIGENETIC LANDSCAPE -
INTRODUCE IDEA OF ATTRACTOR STATES

undifferentiated cell
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The image is pulled from: https:.//www




MODELING GENETIC “NETWORKS” AS BOOLEAN
NETWORKS, ATTRACTOR LANDSCAPES
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F. Arias, Clemente & Catalan, Pablo & Manrubia, Susanna & A. Cuesta, José. (2014). ToyLIFE: A computational framework to study the
multi-level organisation of the genotype-phenotype map. Scientific reports. 4. 10.1038/srep07549.




THE FISSION YEAST CELL CYCLE
REGULATORY NETWORK




THE FISSION YEAST CELL CYCLE
BOOLEAN NETWORK
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Davidich, M. I., & Bornholdt, S. (2008). Boolean network model predicts cell cycle sequence of fission yeast. PLoS ONE, 3(2), el672.



THE NETWORK STATE SPACE FOR
THE FISSION YEAST CELL CYCLE




STUDYING BIOLOGICAL NETWORK STRUCTURE ACROSS
DIFFERENT NETWORKS WILL DRIVE UNDERSTANDING
OF UNDERLYING THEORY

Cell Cycle

Body Segmentation




STUDYING BIOLOGICAL NETWORK STRUCTURE ACROSS
DIFFERENT NETWORKS WILL DRIVE UNDERSTANDING
OF UNDERLYING THEORY

Differentiation Toll Regulatory Network




STUDYING BIOLOGICAL NETWORK STRUCTURE ACROSS
DIFFERENT NETWORKS WILL DRIVE UNDERSTANDING
OF UNDERLYING THEORY

Egfr and Erbb Signaling

Apoptosis Network




STUDYING BIOLOGICAL NETWORK STRUCTURE ACROSS
DIFFERENT NETWORKS WILL DRIVE UNDERSTANDING
OF UNDERLYING THEORY

FA BRCA Pathway T Cell Signaling



INFORMATION STRUCTURES
MATTER IN LIVING SYSTEMS

nature Vol 454|24 July 2008

HORIZONS

Life, logic and information

Paul Nurse

Focusing on information flow will help us to understand better how cells and organisms work.

Nurse, Paul. “Life, logic and information.” Nature 454.7203 (2008): 424-426.



ORIGIN OF LIFE CORRESPONDS TO A TRANSITION IN HOW
INFORMATION IS STORED, PROPAGATED, AND USED

“Focusing on information... may perhaps
provide our best shot at uncovering
universal laws of life that work not just for
biological systems with known chemistry but

also for putative artificial and alien life.”
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Cronin, Leroy, and Sara Imari Walker. “Beyond prebiotic chemistry.” Science 352, no. 6290 (2016): 1174-1175.




LIFE GENERATES HIGHLY
IMPROBABLE STRUCTURES




INFORMATIONAL STRUCTURE

AS A BIOSIGNATURE

BIOLOGICAL RANDOM
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Davies, P.C. and Walker, S.I., 2016. The hidden simplicity of biology. Reports on Progress in Physics, 79(10), p.102601.




PART 3:

NETWORKS




BRIDGES OF KONIGSBERG

Source: https://en.wikipedia.org/wiki/Seven_Bridges_of_K%C3%B6nigsberg




WHAT IS A NETWORK?
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Network theory is a mathematical language for describing complex systems—
e.g., systems with interactions between many heterogeneous components

Barabasi, A.L. Network Science. (From: http:.//barabasi.com/networksciencebook/ )




WHAT IS A NETWORK?
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Network theory deals with the statistics of interactions among
system components and their resultant dynamics

Albert, R., & Barabasi, A. L. (2002). Statistical mechanics of complex networks. Reviews of modern physics, 74(1), 47.



WHAT IS A NETWORK?
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Solving the same problem, different networks can emerge due to different constraints



NETWORK THEORY
AND BIOCHEMISTRY

................




BIOCHEMICAL NETWORKS SHARE COMMON
PROPERTIES INDEPENDENT OF EVOLUTIONARY
DOMAIN OR MAJOR METABOLISM

L
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a. Archaeoglobus fulgidus b. E. coli

: : . b o
A universal signature of living organization: o. Casnorhabiitis elegans o, Avg. 43
organisms

Jeong et al. “The large-scale organization of metabolic networks” Nature (2000) 407: 651 - 654.



SCALING LAWS IN BIOLOGY

[
Sell-Similar Structure

(Fractal)

Scaling laws describe metabolic rate, body (cell size), number of
organelles, lifespan, heartbeats per lifetime, global microbial diversity,
the percentage of mass in predators and prey ...

An Example of Scaling:
Metabolic Rate

METABOLIC RATE (KCALDAY)
20,000

Mouse
2,000 Weight: 1 oz

consumption:
200 4 koal. /day

per oz.
4 ycal
per day -
20 .
o1l * A,
100z. 1lb. 101b. 100 Ib. 1,0001b. 10,000 Ib.

BODY WEGHT

Gisiger, T. “Scale invariance in biology: coincidence or footprint of a universal mechanism?.” Biological Reviews 76.2 (2001): 161-209.

Fractal networks
can describe the
flow of energy/
nutrients in living
system (e.g.,
circulatory
networks),
yielding
predictions
consistent with
observed scaling
trends




EXAMPLE: SHIFTS IN METABOLIC RATE
SCALING ACROSS THE MAJOR EVOLUTIONARY

TRANSITIONS OF LIFE
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Figure courtesy of Jordan Okie
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Empirically observed scaling
laws for metabolic rate as a
function of body-mass exhibits
three major regimes, associated
with prokaryotes, protists, and
metazoans.

Delong, John P., et al. “Shifts in metabolic scaling, production, and efficiency across major evolutionary transitions of life.” Proceedings of the
National Academy of Sciences 107.29 (2010): 12941-12945.



SCALING LAWS CAN HELP US UNDERSTAND
PLANETARY-SCALE ORGANIZATION OF LIFE
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SCALING LAWS CAN HELP US UNDERSTAND
PLANETARY-SCALE ORGANIZATION OF LIFE

Network representation of the global inventory of
enzymatically catalyzed biochemical reactions



“LEVELS” OF ORGANIZATION

“Having a biosphere is a definite ‘state’
for the earth, which is positively favored

over alternative states devoid of life ...”
—Eric Smith
[JTB 252 (2008) 185-19)]

BIOSPHERE
COMMUNITY

¥ INDIVIDUAL




SCALING LAWS ACROSS
BIOCHEMICAL NETWORKS

a) Level-specific property
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UNIVERSAL SCALING LAWS DESCRIBE BIOCHEMICAL
NETWORKS OF INDIVIDUALS AND ECOSYSTEMS

CATALYTIC DIVERSITY

Individuals Ecosystems

ecosystems
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Kim, Hyunju, Harrison Smith, Cole Mathis, Jason Raymond, and Sara Walker. "Universal Scaling Across Biochemical Networks on Earth" bioRxiv (2017): 212118.




SCALING LAWS FOR REAL BIOCHEMICAL
NETWORKS DIFFERS FROM RANDOM

|
(even with same global inventory of chemical reactions)

CATALYTIC DIVERSITY NETWORK TOPOLOGY

Randomly sampled reactions
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Kim, Hyunju, Harrison Smith, Cole Mathis, Jason Raymond, and Sara Walker. “Universal Scaling Across Biochemical Networks on Earth” bioRxiv (2017): 212118.




FUTURE DIRECTIONS:
UNIFYING SCALING LAWS

[
emergence of life

® |s there a unified theory that describes \ o

scaling across different dimensions of prokaryote |

biological systems? —

prol lvyol-- @D  endosymblosis

B Which scaling relations are universal, \

and which are contingent on the J—

-————

evolutionary history for life on Earth?

multicellular & colonial prokaryotes

If scaling behavior is universal and can be derived from an underlying common theory, it will be
an important step towards predictive theory for the properties of life on other worlds.

Figure courtesy of Chris Kempes, Melanie Mose, Jordan Okie




FUTURE DIRECTIONS: A PLANETARY-SCALE THEORY
FOR THE ORGANIZATION OF LIVING WORLDS

I

Earth’s systems can be represented ’ k /
as an interacting multi-layer Hydrosphere
network:

What can we learn about life as a
planetary-scale process by studying
these interacting networks?




PART 4:

COLLECTIVE BEHAVIOR




COLLECTIVE DECISION- ‘
MAKING IN TEMNOTHORAX
ANT COLONIES



OVERVIEW

Motivation: Looking for Laws of Life.

Project Description: Determine where the information is stored
(internal state vs external environment) during nest-site selection in
Temnothorax rugatulus ant colonies.

B  Previous Results: Behavior is heterogeneous, Brownian motion
model

® Recent Progress: Quorum Sensing with Brownian Motion + Temporal
Discounting. Nest Assessment Experiments.

® Next Steps: Tracking during nest assessment. Full dynamical model
of collective decision.



MOTIVATION

Looking for Laws of Life

Living systems store information

®  What information about the
environment gets internalized
and why?




CASE STUDY - NEST-SITE
IN SELECTION IN
TEMNOTHORAX RUGATULU

B House-hunting species of ant capable
of robustly choosing the better of two
candidate nests

B Well documented example of
distributed computation with
decentralized control

B What is the interplay between the
internal state and external
environment?

B Can we get a predictive, mechanistic
account of dynamics?

Image: Pratt Lab



REVIEW

FOUR PHASES OF NEST-SITE SELECTION:

B Assessment - Nest sites are discovered / Good Mediocre \
by active ants
B Tandem Runs - Recruiters begin to P
lead other ants to the candidate nests 'Y SN e
via slow “tandem runs” -
B Quorum Sensing - A critical density is 8 o.,. o
. oi o o
sensed at a candidate nest \ ,o’.-::.. ./
B Transports — Recruiters begin to carry i °

their nest mates to the selected nest Passive | W Active




BROWNIAN MOTION
MODEL

Time: 0.0000
B

B Null Hypothesis: Assume there is no
dynamically relevant internal state

B Environment completely dictates the
dynamics

B Ant motion is random (Brownian)

B Can this model account for any
observations?




BROWNIAN MOTION
MODEL

|
EXPERIMENT SIMULATION
[ ] 3000 Time vs Encounter Rate (No Delay, Nest Pop = 20)
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Brownian motion appears to be able to account for critical
slowing during quorum sensing




MISSING SOMETHING ...

Exploration
P / > Tandem Runs > Quorum Sensing > Transport >
Assessment

B Marks the transition in recruitment behavior from slow tandem runs to fast transports

® Even if the motion is Brownian, something must change internally since recruiters change behavior
B What is being sensed to incite this change? That is, what information is internalized?
— All we know is it is encounter rate dependent [Pratt, 2005]

® Proposed explanation

— Brownian Motion + Temporal Discounting




Mental State of an Ant

TEMPORAL ‘
DISCOUNTING MODEL

Perceived Reward
o o o
P o &
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o
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B Collisions stimulate recruiters from
the ground state (tandem run) into Encounter
an excited state (transport)

® -----Z---- Transport ---

B The excited state decays back into
the ground state with some time
constant

B Ants move under Brownian motion so
nest geometry still dictates the
decision

e
[
L

Aswitch = 0.17

Transport Probability

B Model parameters can be tuned to
select certain nest geometry
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TEMPORAL
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IS THIS THE WHOLE STORY?

Exploration
P / > Tandem Runs > Quorum Sensing > Transport >
Assessment

\ A J

| |

7? Brownian Motion + Temporal Discounting




IS THIS THE WHOLE STORY?

Exploration/

Tandem Runs Quorum Sensing Transport
Assessment
( Y J
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B Experiments show preferential
recruitment to the good nest [Mallon,
2001]

B Asymmetry in nest assessment
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B Data shows recruiters spend significantly
longer assessing the good nest
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NEST AREA ASSESSMENTS
(EXPERIMENTS)

Determine whether ants use Brownian motion to assess nest geometry




NEST AREA ASSESSMENTS
(RESULTS)
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Time Inside vs Diameter - All Treatments
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NEST AREA ASSESSMENTS
(RESULTS)

[ ]
Time Inside vs Diameter - All Treatments
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Motion during assessment is not Brownian!!



NEST AREA ASSESSMENTS
(TRACKING)

B |f motion is not Brownian, how are nest
area and aperture size assessed?

B What is being internalized?

®m Are recruiters aware of these high-level
concepts?

B Why is the recruitment asymmetric?




SUMMARY

Life is an emergent phenomenon

Not only are patterns emergent, but so are the rules

Information is important for understanding these emergent properties
Some emergent properties are universal to all life
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