The history of our Universe: a work in progress
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The Hot Big Bang

Some history

1912 Henrietta Leavitt Cepheid variables in the LMC . 1948 Bethe, Alpher Gamow, "The Origin of Chemical

* 1913 Vesto Slipher Redshift of Andromeda Elements”, Gamow’s “The Origin of Elements and the

* 1915 Harlow Shapley size of the Milky Way | Separation of Galaxies" and Alpher and Herman'’s

* 1917 Einstein's paper applying GR to the entire Universe “Evolution of the Universe” with the estimate of the CMB
1920 Shapley-Curtis Great debate temperature

A

e 1922 Alexander Friedmann "On the curvature of space”

1924 Hubble Cepheids in Andromeda

1927 Georges Lemaitre paper containing estimate of Hubble constant
* 1929 Hubble's paper with the Hubble law

A

A

A



The Hot Big Bang

A MEASUREMENT OF EXCESS ANTENNA TEMPERATURE
i AT 4080 Mc/s

A. A. PENzIAS
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May 13, 1965
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COSMIC BLACK-BODY RADIATION* R. H. DickE
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Many things are still unknown

Dark Matter
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The Early Universe: probing unknown physics

Today t, t = 15 billion years

T=3K {1 meV)

Life on earth

Solar system

Quasars

Galaxy formation
Epoch of gravitational collapse

Recombination
Relic radiation decouples (CBR)

Matter domination
Onset of gravitational insfaility

1015

Nucleosynthesis
Lightelements created - D, He, Li

Quark-hadron transition
Hadrons form - protons & neutrons

Electroweak phase transition

Electromagnetic & weak nuclear

forces become differentfiated:
SU(3)xSU(2)xU(1) -> SU(3)xU (1)

The Particle Desert
Axions, supersymmetry?

1016

Grand unification transition
G -> H -> SU(3)xSU(2)xU(1)
Inflation, baryogenesis,
monopoles, cosmic strings, efc.?

The Planck epoch

The gquantum gravity barrier
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https://www.youtube.com/redirect?q=http%3A%2F%2Fcosmicweb.uchicago.edu%2F&redir_token=8JBbdx7dBZ_9MRNHKvUcDOMNmO98MTQ5NjMyNjM2OEAxNDk2MjM5OTY4

1982: CfA 1 (2000 gal redshifts)

Tracing the Large Scale Structure -

1996 Las Campanas (26000 gal redshifts) 2001 2 degree Field (220000 gal redshifts)

First CfA Strip
285 £ &8« 325

my < 186.6

2004 2 SDSS (380000 gal redshjits)

SAO 19

North ¢z (1000 km/s)

11263 galaxies

COBE (1989-1993)  WMAP (2003-2012)  Planck (2009-2013) (ongoing)

representative
example of
ground and
ballon based
efforts




Best constraints on Composition
Planck 2015

Table 18. Constraints on the basic six-parameter ACDM model
using Planck angular power spectra.®

SDSS-IlI Andersen et al

Even cosmic

acceleration Is
PlanckTT+lowP PlanckTT, TE ., EE+1lowP NOW being
Parameter 68 % limits 68 % limits 2.
: measured by i
QA% . ... ... 0.02222 + 0.00023 0.02225 + 0.00016 - z,
Qh ... .. 0.1197 + 0.0022 0.1198 + 0.0015 "~ 1 OOO' trackmg these
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Photon trajectorie

The 1919 Solar Eclipse
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Apporent Poslien 4

Observations. Vo ‘ Actuel Position =

THE SUN
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EINSTEIN THEORY TRIUMPHS

93.000.000miles 8" Y P THE SUN

Stars Not Where They Seemed
or Were Calculated to be,
but Nobody Need Worry.

A BOOK FOR 12 WISE MEN

Showing Path of Tolal Eclipac of MayT8-23_ 1919,
and posiliona of the o ObservalionSkhlions,

No More in All the World Could
Comprehend It, Said Einsteln When
His Daring Publishers Accepted It.




Lensing distorts the
anisotropies and can be
recovered statistically

—uture measurements of
this effect should allow us

to determine the mass of
the neutrinos.

Measurement of the power spectrum of the | |
orojected mass measured by Planck. Map of the mass projected along the line

. , , , , | of sight reconstructed by Planck.
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Lensing 1o defermine masgses

Gravitational Lens in Abell 2218

PF95-14 - ST Scl OPO - April 5, 1995 - W. Couch (UNSW), NASA
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When were the perturbatlons pmd.ﬁlc'ed7
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Cosmological Horizons Conformal Time

A

70

Our Horizon volume is the part of the Universe we can
currently observe.

Past Light-Cone

The Horizon volume was smaller in the past. We can see
regions which could not see each other at the time we see
them.

Last-Scattering Surface

~

Big Bang Singularity Particle Horizon

Recombination

L

D. Baumann 0907.5424

today: 1010 years after BB we can observe: 1028 cm containing 1021 solar masses

BBN 1 sec after the BB one could observe 1 light-sec but the size at that time of the part of the Universe we can currently
observe is 2 light years. Inside of the light-second there are only 0.01 solar masses of material.

At the time when the energy of particles was comparable to that of the LHC, the time was 10-12 seconds. In that time light can
travel roughly a millimeter. That region only contains the mass of hundreds of large buildings. The size at that time of the part of
the Universe we can currently observe is 1012 cm.



When were the seeds of structure created? WMAP
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Before the Hot Big Bang




The peculiar initial condition of our Universe

Why is the Universe so large/old!?

Why is the Universe so homogeneous/synchronized?
What is the origin of the primordial fluctuations!?

Infiationary
Epoch

Can these questions be answered in the context of known
physical principles!?

— . —

Radius of
Observable

Slow-roll inflation rtaeney rarse

Almost exponential expansion

Only small departures from Cosmological Constant (Inflation has to end)
During this period the Universe must have expanded by at least 60 enfolds

H: ¢ At

s1ze X € H; . ¢ x At ~ 60 H: ¢~ 107°% sec



The initial conditions for structure

How did the 1nitial seeds for
structure come about? Quantum
Mechanics

Paul A. M. Dirac
1939 Lecture

“Let us return to dynamical questions.With the
new cosmology the universe must have started off
in some very simple way. What, then, becomes of
the initial conditions required by dynamical theory!?
Plainly there cannot be any, or they must be trivial.
We are left in a situation which would be untenable
with the old mechanics. If the universe were simply
the motion which follow from a given scheme of
equations of motion with trivial initial conditions, it could
not contain the complexity we observe. Quantum
mechanics provides an escape from the difficulty. It
enables us to ascribe the complexity to the quantum
jumps, lying outside the scheme of equations of
motion.”

Inflation needs a clock

Quantum mechanics implies that the clock must fluctuate.
The Universe cannot be perfectly homogeneous.
Properties of the fluctuations are consistent with our best
observations.

Potentially there is an additional fossil, a stochastic
background of gravitational waves.

Calculations are under control.



Probability distribution for the primordial seeds

rigin is quantum mechanical.We can only calculate a probability
istribution for the primordial seeds.

COBE (1989-1993) WMAP (2003-2012) Planck (2009-2013) (ongoing)

* Amplitude almost scale invariant
* No fluctuations in composition of the Universe
* Almost perfectly Gaussian distribution

* [femperature
histogram




A second fossil: tensor modes

200 uK

- 1150

- 1100

ok Potentially there is an additional fossil, a stochastic background of
" gravitational waves.
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Gaussian distribution of amplitudes with amplitude
set by the Hubble scale during Inflation
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Experiments are testing very interesting values. / Waves \

“Simple” textbook examples of inflation mostly ruled \ 5 <o \ / B > 0 /

out.
We can expect significant improvements in the near

future. / \




Is slow-roll inflation the last necessary ingredient ?




Better maps to make a better history




The Cosmic Microwave Background

Large Scale Structure

Instrument P I X I E
(2.725 K)

Polanzing (NASA MIDEX

Fourier Spin

Tansorm  P"1'22023)
BICEP1 BICEP2 Keck Array —
(2006 - 8) (2010 - 12) (2011 -)

Sun/Earth
Shields

Thermal Detectors
Isolation (100 mK)

/v TolEa th Solar Arrays

Spacecraft

EUCLID will map the
* - cosmic web

o
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) 0 5
Longitude (degrees)

-5 0 5

Longitude (degrces-) Longitude (degrees)

LSST DESI Euclid SPHEREx CHIME
Survey type photo spectro photo-+spectro low-res spectro 21-cm
Ground or space ground ground space space ground
PRIMUS
FHTLS, DE B B ’
6m Atacama Cosmology Telescope Previous surveys ¢ 5, DES, 055, eBOSS, no direct precursor COMBO-17, GBT HIM
physics.princeton.edu/act/ HSC PES COSMOS
Survey start 2020 2020 2018 2020 2016
: z <3 (1% z< 14
Redshift- ’ 3 1.5 0.75 2.5
cashi-range sources above 3) | 2 < z < 3.5 (Lya) 7S Zs SEs
Survey area [deg?] 20k 14k 15k 40k 20k
2 x 10 (WL 22x10° gal. 40 x 10 redshifts
A imat ’ ’ 15 x 109 pixel 107 pixel
PPTOTIma e- sources) ~ 2.4 x 10° QSOs | 1.5 x 10° photo-zs 8 PIXEs PIXEs
number of objects
Galaxy clustering /e v v v v
Weak lensing v v v
RSD v v v v
Multi-tracer 4 V4 4 v

Table 2. A selection of currently funded or planned surveys. Other important surveys not included in the
table are PFS, JPAS, PAU, EMU. Relevant survey links [LSST],[DESI|,[Euclid|, [UBC],[PFS], [JPAS],[PAU],
[EMU]J. °“Galaxy clustering is possible, but very strong radial degradation.
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http://spider.princeton.edu




